Arkansas Department of Environmental Quality Water Quality Management Plan Update Summary Sheet

Madalina Frainces. Town Live

Downson J Day Chana Day

Date:	July 22, 2020	wiodening Engineer:	Telly Liu	Kevieweu by	. Shane byruin

 □ New Permit
 □ Renewal Permit
 □ Amended Permit

Type of Discharge: minor treated sanitary and cafeteria wastewater

Facility Name: Arkansas Department of Corrections - North Central Unit

Permit No.: AR0044016

Data. Iul. 22 2020

Design Flow Rate (MGD): 0.09

Receiving Stream: Moccasin Creek, thence to the White River

HUC + Reach Code: 11010004+908 **7Q10:** 0.0 cfs

Planning Segment: 4F **County:** Izard

Proposed Monthly Average Effluent Limits in mg/L (CBOD₅/TSS/NH₃-N/DO):

April: 10/15/3.9/5* *DO is Instantaneous Minimum May-October: 10/15/3/5.1* *DO is Instantaneous Minimum November-March: 10/15/5/5* *DO is Instantaneous Minimum

Current Monthly Average Effluent Limits in mg/L (CBOD₅/TSS/NH₃-N/DO):

April: 10/15/3.9/5* *DO is Instantaneous Minimum May-October: 10/15/3/5* *DO is Instantaneous Minimum November-March: 10/15/5/5* *DO is Instantaneous Minimum

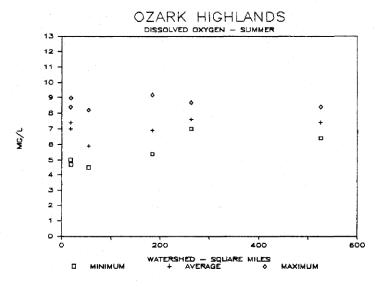
TMDL Limits: None

Justification (Sag = Minimum Modeled Value ≠ Difference in Value):

Reach No.	Length (miles)	DO WQS _C (mg/L)	DO Sag _C (mg/L)	Distance to DO Sag _C (miles)	DO WQS _P (mg/L)	DO Sag _P (mg/L)	Distance to DO Sag _P (miles)
1	0.5	5.0 1	5.0	0.06	6.0	7.1	0.0

Values in above table are from a modeling analysis dated July 22, 2020.

Outfall Location (Lat/Long): 36° 10′ 10.65″ N; 92° 09′ 29.15″ W


Remarks:

This is for the reissuance of the discharge permit for this existing facility. A new model was performed with updated hydraulics. Based on updated model, the DO limit during critical season is required to be revised to meet water quality standard for DO. The 208 Plan is being updated to revise the instantaneous minimum DO limit during May through October from 5.0 mg/L to 5.1 mg/L.

¹ Critical season DO standard for Moccasin Creek at the discharge location is set by a UAA, and is more stringent than the default ecoregion standard for watershed less than 10 square miles. The watershed area at discharge location is 6.34 square miles based on USGS StreamStats.

•			Ammonia Calculations			
POTW?	No	(Yes or No)			COLOR KEY	
Facility Name	ADC - North Central Unit					User Inputs
Major or Minor	Minor					Calculated values
Permit Number	AR0044016					
Receiving Stream	Moccasin Creek		Ecoregion or River name	Ozark Highlands		
7Q10, cfs	0	USGSMap	Watershed area (mi2)	6.34		
0.25/0.67 multiplier	0.67		Regulation No. 2 Chronic	Toxicity Critieria (In	stream Concentrati	on)
Qb, cfs	0.00		_	AML, mg/l	DML, mg/l	
Qe, MGD	0.09	Dozign flau	April	3.9	3.9	
Qe, cfs	0.14		May - October	3.9	3.9	
Cb, mg/l	0	Madelinputupetream	November - March	10.3	10.3	
Allowable Effluent C						
(Qe * Ce) + (Qb* Cb) = (Qe + Qb) * IWC			Allowable Effluer	nt Conc. (Ce), mg/	<u> </u>
Qe	Effluent Flow			Ce = (IWC (Qe + C	Qb) - Cb X Qb) / Qe	
Ce	Allowable Effluent Concer	ntration		())	Monthly Avg.,mg/l	Daily Max, mg/l
Qb	% of Low Flow of Receiving	ng Stream		April	3.90	3.90
Cb	Background Concentratio			May - October	3.90	3.90
IWC	Instream Waste Concent	ration Chronic Toxi	city Criteria	November - March	10.30	10.30
Chronic Toxicity C	riteria vs. D.O. Model Li	mits				
	Monthly Average,	mg/l	Permit Limits	Daily Maxi	mum, mg/l	Permit Limits
Month	Toxicity limit	D.O. limit		Toxicity limit	D.O. limit	
April	3.90	5	3.90	3.90	7.5	3.90
May - October	3.90	3	3.00	3.90	4.5	3.90
November - March	10.30	5	5.00	10.30	7.5	7.50

10.30	5	5.00	10.30	7.5
			Ammonia Toxi	city Criteria
Minor Permits				
Fish Early Life Stages Abser	nt - Primary Seaso	on (Novemb	er - March), mg	/L
Ecoregion	Temperature	pH	4-day average	30-day average
Arkansas River	14	7.6	10.3	10.3
Arkansas River Valley	14	6.7	16.7	16.7
Boston Mountains	14	6.9	15.8	15.8
Delta	14	7.1	14.7	14.7
Gulf Coastal Plains	14	6.6	17	17
Ouachita Mountains	14	7.1	14.7	14.7
Ouachita River (L. Mo. to Mo	uth) 14	6.7	16.7	16.7
Ozark Highlands	14	7.6	10.3	10.3
Red River	14	7.5	11.3	11.3
White River (Dam #10 Mouth) 14	7.7	9.3	9.3
Fish Early Life Stages Prese				
Ecoregion	Temperature	pH	4-day average	30-day average
Arkansas River	32	7.6	3.2	3.2
Arkansas River Valley	31	6.7	5.6	
Boston Mountains	31	6.9	5.3	5.3
Delta	30	7.1	5.2	5.2
Gulf Coastal Plains	30	6.6	6.1	6.1
Ouachita Mountains	30	7.1	5.2	
Ouachita River (L. Mo. to Mo	uth) 32	6.7	5.2	5.2
Ozark Highlands	29	7.6	3.9	3.9
Red River	32	7.5	3.5	3.5
White River (Dam #10 Mouth) 32	7.7	2.9	2.9

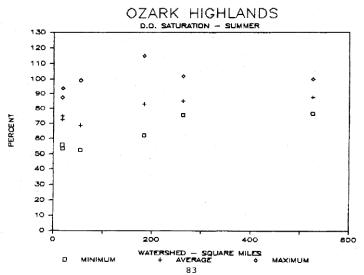
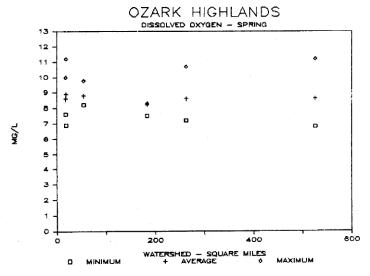
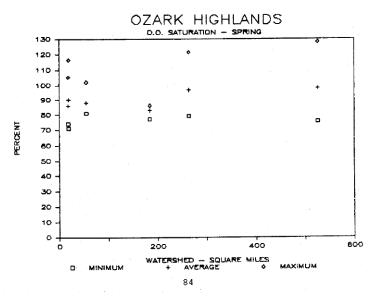




Figure D-11. Dissolved Oxygen and Saturation Values for Ozark Highlands Ecoregion Reference Streams during Spring Period

StreamStats Report

Region ID:

Workspace ID:

Clicked Point (Latitude, Longitude):

Time:

AR AR20200629192120432000 36.16986, -92.15819 2020-06-29 14:21:38 -0500

	O.I.	
Rasın	Charac	teristics

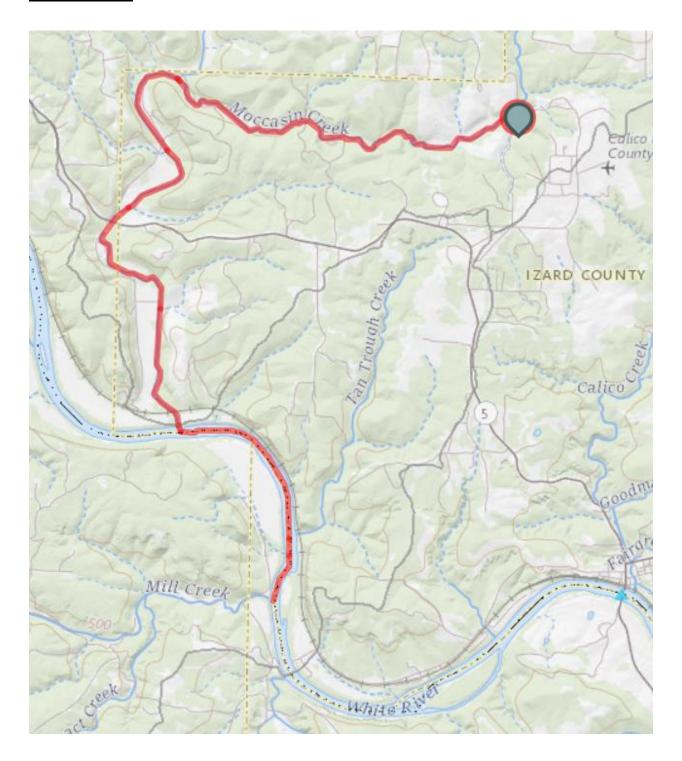
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	6.34	square miles

Sediment Oxygen Demand (SOD) for Various Temperatures and Ecoregion ⁵

Projected TSS instream after mixing.

² TSS values are from MOA with EPA found in the CPP. SOD values for rocky substrate are

Rocky Substrate ⁴						Applicable Ecoregions ⁶
TSS ¹	SOD_{20}	SOD_{22}	SOD ₂₉	SOD_{30}	SOD_{31}	Ozark Highlands
15^2	0.3	0.34	0.51	0.54	0.57	Boston Mountains
20^{2}	0.5	0.56	0.84	0.90	0.95	Ouachita Mountains
30^{2}	1.0	1.12	1.69	1.79	1.90	
45 ³	1.4	1.57	2.37	2.51	2.66	
90^{3}	1.8	2.02	3.04	3.22	3.42	
		Mixed S	ubstrate	!		
TSS ¹	SOD_{20}	SOD_{22}	SOD ₂₉	SOD_{30}	SOD_{31}	Arkansas River Valley
15^2	0.4	0.45	0.68	0.72	0.76	Gulf Coastal Plain
20^{2}	0.7	0.79	1.18	1.25	1.33	
30^{2}	1.3	1.46	2.20	2.33	2.47	
45 ³	1.6	1.80	2.70	2.87	3.04	
90^{3}	1.9	2.13	3.21	3.40	3.61	
		Sandy Su	ubstrate [']			
TSS ¹	SOD_{20}	SOD_{22}	SOD_{30}	SOD_{31}	SOD_{32}	Arkansas River Valley
15^2	0.5	0.56	0.90	0.95	1.01	Gulf Coastal Plain
20^{2}	0.8	0.90	1.43	1.52	1.61	Delta
30^{2}	1.5	1.69	2.69	2.85	3.0	
45 ³	1.8	2.02	3.22	3.42	3.62	
90^{3}	2.0	2.25	3.58	3.80	4.02	


the lower end of range given in the MOA. SOD values for sandy substrate are the upper end of range given in the MOA.

These TSS concentrations are outside of the range given in the MOA, so the corresponding SOD values are estimated.

SOD values given in this table are the lower and upper ends of the recommended range. SOD values between the upper and lower values are acceptable based on nature of substrate.

- Deviations from these rates may take place in situations of high instream dilution, which significantly reduces the impact of the benthal (sediment) deposits on oxygen consumption. In these situations, justification on a case by case basis will be provided in the documentation submitted to EPA.
- ⁶ Applicable ecoregions are based on the general characteristics of waterbodies within each ecoregion (Rocky, Gravel, or Mixed). A different substrate type may be used based on site specific observations of the particular stream in question.

Flow Diagram:

Model Input Data

W.S. Drainage Area (mi²): 6.34

Ecoregion: Ozark Highlands

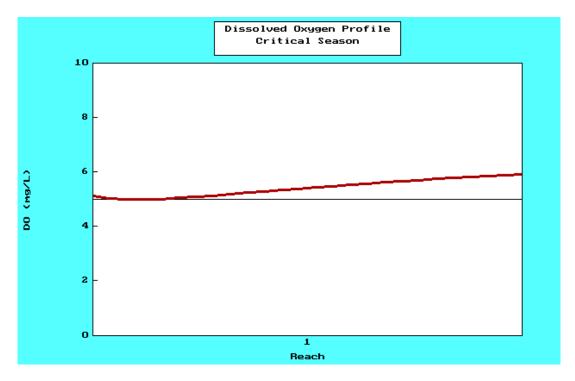
Q_{DESIGN}: 0.09 MGD

7Q10: 0 cfs (1983 Arkansas Geological Commission Map)

Input Model Coefficients

	Reach 1							
Coefficient – at 20° C	Inpu	it value	Justification	on				
BOD _{ult.} /BOD ₅	2.3		EPA Guid	ance				
$K_d(1/day)$	0.4		MOA, roc	ky substrate				
$K_n (1/day)$	0.3		MOA, roc	ky substrate				
$SOD (g/m^2/day)$	0.5		MOA, roc	, rocky substrate				
$K_a (1/day)$	7.7 ((critical season)	O'Conner Dobbins equation					
	8.1 (primary season) O'Conner Dobbins equation		Dobbins equation				
	Ap	plicable Water Qua	ality Standa	rds				
		Critical Season (May-Oct.)		Primary Season (NovApr.)				
Reach 1			Reach 1					
D.O. Standard (mg/L) 5.0^{2}			6.0					
Temp. Standard (°C)		29		22				

² Critical season DO standard for Moccasin Creek at the discharge location is set by a UAA, and is more stringent than the default ecoregion standard for watershed less than 10 square miles. The watershed area at discharge location is 6.34 square miles based on USGS StreamStats.


Critical Season Stream Hydraulics

Q mgd	V	D	W	Ka (O'Conner Dobbins)	Velocity Coefficient	Depth Coefficient	Width Coefficient	Product of Coefficients
								(should equal 1)
0.005	0.005	0.175	9.635	11.980	0.085	0.751	15.665	1.00
0.01	0.007	0.215	10.327	10.797				
0.015	0.009	0.243	10.754	10.160	Velocity Exponent	Depth Exponent	Width Exponent	Sum of Exponents
0.02	0.011	0.265	11.068	9.730				(should equal 1)
0.025	0.012	0.283	11.318	9.410	0.6	0.3	3 0.1	1.
0.03	0.013	0.299	11.526	9.156				
0.035	0.015	0.313	11.705	8.947				
0.04	0.016	0.326	11.862	8.770				
0.045	0.017	0.338	12.003	8.616	This worksheet is the	e hydraulics for stre	eam flows up to 0.2	MGD.
0.05	0.018	0.349	12.130	8.481				
0.055	0.019	0.359	12.246	8.361	The Velocity, Depth, a	and Width values ir	n chart to left are fro	om the following
0.06	0.020	0.368	12.353	8.252	emperical equations	which were develo	ped based on the e	mperical relationships
0.065	0.021	0.377	12.452	8.154	presented on page 2-	-33 of EPA Septemb	oer 1983 Technical G	Guidance Manual for
0.07	0.022	0.386	12.545	8.064	Performing Waste Lo	ad Allocations, Boo	k II (Streams and R	ivers).
0.075	0.023	0.394	12.632	7.981				
0.08	0.024	0.401	12.714	7.904	Velocity = 0.085 Q 0.6			
0.085	0.025	0.409	12.791	7.832				
0.09	0.026	0.416	12.864	7.765	Depth = 0.751 Q 0.3			
0.095	0.027	0.423	12.934	7.702	·			
0.1	0.028	0.429	13.001	7.643	Width = 15.665 Q 0.1			

Primary Season Stream Hydraulics

0.86 Headwater in CFS	0.072323	0.5	0.567722	0.4	24.35498	0.1	Accum
		FPS		Feet		Feet	MGD
0.09 Discharger 1 in MGD	Reach 1 Velocity	0.072	Depth	0.568	Width	24.353	0.646

Critical Season Model (44016_C.smp) 10/15/3/5.1 simulation (CBOD5/TSS/NH3/DO)

Cri	tical Season	TABULAR MODEL	OUTPUT	
	River Mile	DO (mg/L)	BOD (mg/L)	NH3 (mg/L)
1	0.50	5.10	23.00	3.00
2	0.48	5.01	22.36	2.92
3	0.46	4.98	21.73	2.84
4	0.44	4.98	21.12	2.76
5	0.42	5.00	20.53	2.68
6	0.40	5.03	19.95	2.61
- 7	0.38	5.08	19.39	2.53
8	0.36	5.13	18.85	2.46
9	0.34	5.17	18.32	2.39
10	0.32	5.23	17.81	2.33
11	0.30	5.28	17.31	2.26
12	0.28	5.33	16.82	2.20
13	0.26	5.37	16.35	2.14
14	0.24	5.42	15.89	2.08
15	0.22	5.47	15.45	2.02
16	0.20	5.52	15.02	1.97
17	0.18	5.56	14.59	1.91
18	0.16	5.60	14.19	1.86
19	0.14	5.65	13.79	1.81
20	0.12	5.69	13.40	1.76
21	0.10	5.73	13.03	1.71
22	0.08	5.77	12.66	1.66
23	0.06	5.80	12.31	1.61
24	0.04	5.84	11.96	1.57
25	0.02	5.88	11.63	1.53
26	-0.00	5.91	11.30	1.48

Critical Season Ru	n information screen	
Name of receiving stream		Moccasin Creek
Number of discharges	(max = 10)	1
Number of reaches	(max = 10)	1
Reaeration type	(O, T, M)	O'Connor-Dobbins
Run title for screen displ	ay	Critical Season
Graphics printer type	(HP, FX, LQ, None)	None
Printed graph resolution	(Low, Med, High)	None

Critical Season	Upstream River Pa	ırameters	Comments
Flow	(cfs)	0.00	
Temperature	(°C)	29.00	
Dissolved Oxygen	(mg/1)	5.37	70%sat ER study
5-Day BOD	(mg/1)	1.00	
Ult. CBOD / 5-Day BO	D	2.30	
pН	(su)	7.00	
Ammonia	(mg/1)	0.10	
Alkalinity	(mg/1)	-0.00	
Upstream ri∪er mile		0.50	

Critical Season	Parameters for Discharge 1		Comments
Flow	(MGD)	0.09	
Temperature	(°C)	29.00	
Dissolved Oxygen	(mg/1)	5.10	
5-Day BOD	(mg/1)	10.00	
Ult. CBOD / 5-Day BO	D	2.30	
рН	(su)	7.00	
Ammonia	(mg/1)	3.00	
Alkalinity	(mg/1)	-0.00	
Beginning of Reach No	umber	1	
Name of Discharger		ADC-NorthCentra	

Page **11** of **15**

Critical Season	Parameters for Reach 1		Comments
Length	(mile)	0.50	
Velocity	(fps)	0.03	
Slope	(ft/mile)	-0.00	
Average Depth	(ft)	0.42	
Temperature	(°C)	29.00	Calculated
BOD Removal Rate	(1/day)	0.40	
NH3 Decay Rate	(1/day)	0.30	
Sediment Oxygen Demand	l (g/m²/day)	0.51	k20=0.3(tss=15)
Photosynthesis/respira	ation (mg/L/day)	-0.00	

Primary Season Model (44016_P.smp) 10/15/5/5 simulation (CBOD5/TSS/NH3/DO)

Prin	ry Season TABULAR MODEL OUTPUT		TABULAR MODEL OUTPUT		
	River Mile	DO (mg/L)	BOD (mg/L)	NH3 (mg/L)	
1	0.50	7.07	5.18	0.78	
2	0.48	7.19	5.14	0.78	
3	0.46	7.29	5.11	0.77	
4	0.44	7.38	5.07	0.77	
5	0.42	7.45	5.03	0.76	
6 7	0.40	7.52	4.99	0.76	
	0.38	7.57	4.96	0.75	
8	0.36	7.62	4.92	0.75	
9	0.34	7.67	4.88	0.75	
10	0.32	7.71	4.85	0.74	
11	0.30	7.74	4.81	0.74	
12	0.28	7.77	4.78	0.73	
13	0.26	7.79	4.74	0.73	
14	0.24	7.82	4.70	0.72	
15	0.22	7.84	4.67	0.72	
16	0.20	7.85	4.64	0.72	
17	0.18	7.87	4.60	0.71	
18	0.16	7.88	4.57	0.71	
19	0.14	7.90	4.53	0.70	
20	0.12	7.91	4.50	0.70	
21	0.10	7.92	4.47	0.69	
22	0.08	7.93	4.43	0.69	
23	0.06	7.93	4.40	0.69	
24	0.04	7.94	4.37	0.68	
25	0.02	7.95	4.33	0.68	
26	-0.00	7.95	4.30	0.67	

Page **13** of **15**

Primary Season	y Season Run information screen		
Name of receiving stream		Moccasin Creek	
Number of discharge	s (max = 10)	1	
Number of reaches	(max = 10)	1	
Reaeration type	(O, T, M)	O'Connor-Dobbins	
Run title for screen display		Primary Season	
Graphics printer ty	pe (HP, FX, LQ, None)	None	
Printed graph resol	ution (Low, Med, High)	None	

Primary Season	Upstream River Parameters		Comments
Flow	(cfs)	0.86	seasonalfishery
Temperature	(°C)	22.00	
Dissolved Oxygen	(mg/1)	7.41	85%sat ER study
5-Day BOD	(mg/1)	1.00	
Ult. CBOD / 5-Day BO	D	2.30	
pН	(su)	7.00	
Ammonia	(mg/1)	0.10	
Alkalinity	(mg/1)	-0.00	
Upstream ri∨er mile		0.50	

Primary Season	Parameters for Discharge 1		Comments
Flow	(MGD)	0.09	
Temperature	(°C)	22.00	
Dissolved Oxygen	(mg/1)	5.00	
5-Day BOD	(mg/1)	10.00	
Ult. CBOD / 5-Day BOI	D	2.30	
рН	(su)	7.00	
Ammonia	(mg/1)	5.00	
Alkalinity	(mg/1)	-0.00	
Beginning of Reach No	ımber	1	
Name of Discharger		ADC-NorthCentra	

Primary Season Pa	Parameters for Reach 1		Comments
Length	(mile)	0.50	
Velocity	(fps)	0.07	
Slope	(ft/mile)	-0.00	
Average Depth	(ft)	0.57	
Temperature	(°C)	22.00	Calculated
BOD Removal Rate	(1/day)	0.40	
NH3 Decay Rate	(1/day)	0.30	
Sediment Oxygen Demand	(g/m²/day)	0.34	k20=0.3(tss=15)
Photosynthesis/respiration	(mg/L/day)	-0.00	